
PentDoublePrecFPCompact.doc

 - 1 - v. 6

P. Specht´s „Liste der 8-Byte-Floatingpoint Befehle des masm32 Assemblers“

COMPACTED INTEL PENTIUM-4 PRESCOTT (April 2004) DPFP COMMAND SET

ADDPD Add Packed Double-precision Floating-Point Values (8 byte)
ADDSD Add low Scalar Double-precision Floating-Point Values
ADDSUBPD : Packed Double-FP Add/Subtract in the high quadword of source

stores the result in the high quadword of the destination

ANDPD Bitwise Logical AND of Packed Double-precision Floating-Point Values
ANDNPD Bitwise Logical AND NOT of Packed Double-precision Floating-Point Values
CMPPD Compare Packed Double-precision Floating-Point Values

CMPSD Compare Scalar Double-precision Floating-Point Values

= compare dword at address DS:(E)SI with dword at address ES:(E)DI;

COMISD Compare Scalar Ordered Double-precision Floating-Point Values and Set EFLAGS
Compare low doubleprecision floating-point values in xmm1 and xmm2/mem64 , set the EFLAGS

CVTDQ2PD Convert Packed Doubleword Integers to Packed Double-precision Floating-Point
from xmm2/m128 to two packed double-precision floating-point values in xmm1.

CVTPD2DQ Convert Packed Double-precision Floating-Point Values to Packed Doublewd Integers
xmm2/m128 to two packed signed doubleword integers in xmm1

CVTPD2PI Convert Packed Double-precision Floating-Point Values to Packed Doublewd Integers
CVTPD2PS Convert Packed Double-precision Floating-Point Values to Packed Single-PrecisionFP
CVTPI2PD Convert Packed Doubleword Integers to Packed Double-precision Floating-Point
CVTPS2PD Convert Packed Single-Precision Floating-Point Values to Packed Double-precisionFP
CVTSD2SI Convert Scalar Double-precision Floating-Point Value to Doubleword Integer
CVTSD2SS Convert Scalar Double-precision Floating-Point Value to Scalar Single-PrecisionFP
CVTSI2SD Convert Doubleword Integer to Scalar Double-precision Floating-Point Value
CVTSS2SD Convert Scalar Single-Precision Floating-Point Value to Scalar Double-precision FP
CVTTPD2PI Convert with Truncation Packed Double-precision FP to Packed Doubleword Integers
CVTTPD2DQ Convert with Truncation Packed Double-precision FP to Packed Doubleword Integers
CVTTSD2SI Convert with Truncation Scalar Double-precision FP to Signed Doubleword Integer
DIVPD Divide Packed Double-precision Floating-Point Values

in xmm1 by packed doubleprecision floating-point values xmm2/m128.

DIVSD Divide Scalar Double-precision Floating-Point Values
Divide low double-precision floating-point value in xmm1 by low double-precision

floating-point value in xmm2/mem64.

F2XM1 Compute 2x–1
FABS Absolute Value
FADD

FADDP

FIADD

FADD m32fp

FADD FADD FADD FADD m64fp

FADD ST(0), ST(i)

FADD ST(i), ST(0)

FADDP ST(i), ST(0)

FADDP Add ST(0) to ST(1), store result in ST(1), and pop the register stack.

FIADD m32int

FIADD m16int

FCHS Change Sign
FCMOVcc

Floating-Point Conditional Move

PentDoublePrecFPCompact.doc

 - 2 - v. 6

FCOS Cosine
FDIV

FDIVP

FIDIV

Divide

FDIVR

FDIVRP

FIDIVR

Reverse Divide

FFREE Free Floating-Point Register
FINIT
FNINIT

Initialize FPU after checking for pending unmasked floatingInitialize FPU after checking for pending unmasked floatingInitialize FPU after checking for pending unmasked floatingInitialize FPU after checking for pending unmasked floating----point exceptions.point exceptions.point exceptions.point exceptions.

InitialInitialInitialInitialize FPU without checking for pending unmasked floatingize FPU without checking for pending unmasked floatingize FPU without checking for pending unmasked floatingize FPU without checking for pending unmasked floating----point exceptions.point exceptions.point exceptions.point exceptions.
FLD Load Floating Point Value

Push m32fp onto the FPU register stack.

Push Push Push Push m64fp onto the FPU register stack.onto the FPU register stack.onto the FPU register stack.onto the FPU register stack.

Push Push Push Push m80fp onto the FPU register stack.onto the FPU register stack.onto the FPU register stack.onto the FPU register stack.

Push ST(i) onto the FPU registePush ST(i) onto the FPU registePush ST(i) onto the FPU registePush ST(i) onto the FPU register stack.r stack.r stack.r stack.

FLD1

FLDL2T

FLDL2E

FLDPI
FLDLG2

FLDLN2

FLDZ

Load Constant

FMUL
FMULP

FIMUL

Multiply

FNOP No Operation
FPATAN Partial Arctangent
FPREM Partial Remainder
FPREM1 Partial Remainder
FPTAN Partial Tangent
FRNDINT Round to Integer
FSCALE Scale
FSIN Sine
FSINCOS Sine and Cosine
FSQRT Square Root
FST

FSTP
Store Floating Point Value
Copy ST(0) to m32fp.

Copy ST(0) to Copy ST(0) to Copy ST(0) to Copy ST(0) to m64fp.

Copy ST(0) to ST(i).Copy ST(0) to ST(i).Copy ST(0) to ST(i).Copy ST(0) to ST(i).

Copy ST(0) to m32fp and pop register stack.

Copy ST(0) to Copy ST(0) to Copy ST(0) to Copy ST(0) to m64fp and pop register stack.and pop register stack.and pop register stack.and pop register stack.

Copy SCopy SCopy SCopy ST(0) to T(0) to T(0) to T(0) to m80fp and pop register stack.and pop register stack.and pop register stack.and pop register stack.

Copy ST(0) to ST(i) and pop register stack.Copy ST(0) to ST(i) and pop register stack.Copy ST(0) to ST(i) and pop register stack.Copy ST(0) to ST(i) and pop register stack.

FSUB
FSUBP

FISUB

Subtract

FSUBR

FSUBRP

FISUBR

Reverse Subtract

FTST TEST

FUCOM

FUCOMP
FUCOMPP

Unordered Compare Floating Point Values
Compare ST(0) with ST(i).

Compare ST(0) with ST(1).

Compare ST(0) with ST(i) and pop register stack.

Compare ST(0) with ST(1) and pop register stack.

Compare ST(0) with ST(1) and pop register stack twice.

FXAM ExamineModR/M
FXCH Exchange Register Contents
FXRSTOR Restore x87 FPU, MMX Technology, SSE, SSE2, and SSE3 State
FXSAVE Save x87 FPU, MMX Technology, SSE, and SSE2 State
FXTRACT Extract Exponent and Significand
FYL2X Compute y * log2x
FYL2XP1 Compute y * log2(x +1)
HADDPD Packed Double-FP Horizontal Add

PentDoublePrecFPCompact.doc

 - 3 - v. 6

HSUBPD : Packed Double-FP Horizontal Subtract

like HADDPD, but subtract from lower the upper
Jcc Jump if Condition Is Met *)
JMP Jump
LDDQU : Load Unaligned Integer 128 Bits
LEA Load Effective Address
LOOP
LOOPcc

Loop According to ECX Counter
E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0.
E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF = 1.
E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF = 0.

MASKMOVDQU Store Selected Bytes of Double Quadword
Selectively write bytes from xmm1 to memory location using the byte mask in xmm2. The default
memory location is specified by DS:EDI.

MASKMOVQ Store Selected Bytes of Quadword
MAXPD Return Maximum Packed Double-precision Floating-Point Values

Return the maximum double-precision floating-point values between xmm2/m128 and xmm1.
The most significant bit in each byte of the mask operand determines whether the corresponding byte in the

source operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates

write.

MAXSD Return Maximum Scalar Double-precision Floating-Point Value
Return the maximum scalar doubleprecision floating-point value between xmm2/mem64 and xmm1

MINPD Return Minimum Packed Double-precision Floating-Point Values (see MAXPD)
MINSD Return Minimum Scalar Double-precision Floating-Point Value (see MAXSD)
MOV

MOVAPD Move Aligned Packed Double-precision Floating-Point Values:

Move packed double-precision floating-point values from xmm2/m128 to xmm1.

Move packed double-precision floating-point values from xmm1 to xmm2/m128

MOVD

MOVQ
Move Doubleword

Move Quadword
MOVDDUP : Move One Double-FP and Duplicate

Move (lower) double-precision floatingpoint value from the lower 64-bit operand in xmm2/m64 to xmm1

and duplicate to the upper 64 bit of xmm1

MOVDQA Move Aligned Double Quadword
MOVDQU Move Unaligned Double Quadword
MOVDQ2Q Move low Quadword from XMM to MMX Technology Register
MOVHPD Move High64bit of Packed-Double-precision Floating-Point Value

PentDoublePrecFPCompact.doc

 - 4 - v. 6

Move double-precision floating-point value from m64 to high quadword of xmm.

Move double-precision floating-point value from high quadword of xmm to m64.

MOVLPD Move Low Packed Double-precision Floating-Point Value (see MOVHPD)
MOVMSKPD Extract Packed Double-precision Floating-Point Sign Mask

Extract 2-bit sign mask from xmm and store in r32.

MOVNTDQ Store Double Quadword Using Non-Temporal Hint
Move double quadword from xmm to m128 using non-temporal hint.

MOVNTPD Store Packed Double-precision Floating-Point Values Using Non-Temporal Hint
MOVQ Move Quadword
MOVQ2DQ Move Quadword from MMX Technology to low quadword of XMM Register
MOVSD Move Scalar Double-precision Floating-Point Value

Move scalar double-precision floating-point value from xmm2/m64 to xmm1 register.

Move scalar double-precision floating-point value from xmm1 register to xmm2/m64.

MOVUPD Move Unaligned Packed Double-precision Floating-Point Values
Move packed double-precision floating-point values from xmm2/m128 to xmm1.

Move packed double-precision floating-point values from xmm1 to xmm2/m128.

MOVZX Move with Zero-Extend
MULPD Multiply Packed Double-precision Floating-Point Values in xmm2/m128 by xmm1
MULSD Multiply Scalar Double-precision Floating-Point Values

Multiply the low double-precision floating-point value in xmm2/mem64 by low double-precision floating-

point value in xmm1.

ORPD Bitwise Logical OR of Double-precision Floating-Point Values in xmm2/m128 and xmm1.
PAND Logical AND

Bitwise AND mm/m64 and mm.

Bitwise AND of xmm2/m128 and xmm1.
The destination operand can be an MMX technology register or an XMM register.

PANDN Logical AND NOT (see above)
PAUSE Spin Loop Hint
PAVGB

PAVGW
Average Packed Integers

PCMPEQB

PCMPEQW

PCMPEQD

 Compare Packed Data for Equal

Compare packed doublewords in mm/m64 and mmx for equality

Compare packed doublewords in xmm2/m128 and xmm1 for equality

PMOVMSKB Move Byte Mask of xmm or mmx to r32.

POP Pop a Value from the Stack
PSLLDQ Shift xmm1 Double Quadword Left Logical by imm8 bytes and by shifting in 0s.

PSRLDQ Shift Double Quadword Right Logical
PUSH Push Word or Doubleword Onto the Stack
PUSHF

PUSHFD
Push EFLAGS Register onto the Stack

PXOR Logical Exclusive OR
REP

REPE

REPZ

REPNE

REPNZ

Repeat String Operation Prefix
F3 6C REP INS m8, DX Valid Valid Input (E)CX bytes from port DX into ES:[(E)DI].

F3 6C REP INS m8, DX Valid N.E. Input RCX bytes from port DX into [RDI].

F3 6D REP INS m16, DX Valid Valid Input (E)CX words from port DX into ES:[(E)DI.]

F3 6D REP INS F3 6D REP INS F3 6D REP INS F3 6D REP INS m32, DX Valid Valid , DX Valid Valid , DX Valid Valid , DX Valid Valid Input (E)CX doublewInput (E)CX doublewInput (E)CX doublewInput (E)CX doublewords from port DX into ES:[(E)DI].ords from port DX into ES:[(E)DI].ords from port DX into ES:[(E)DI].ords from port DX into ES:[(E)DI].

F3 A4 REP MOVS m8, m8 Valid Valid Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m16, m16 Valid Valid Move (E)CX words from DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS F3 A5 REP MOVS F3 A5 REP MOVS F3 A5 REP MOVS m32, m32 Valid ValidValid ValidValid ValidValid Valid Move (E)CX doublewMove (E)CX doublewMove (E)CX doublewMove (E)CX doublewords fromDS:[(E)SI] to ES:[(E)DI].ords fromDS:[(E)SI] to ES:[(E)DI].ords fromDS:[(E)SI] to ES:[(E)DI].ords fromDS:[(E)SI] to ES:[(E)DI].

F3 6E REP OUTS DX, r/m8 Valid Valid Output (E)CX bytes from DS:[(E)SI] to port DX.

F3 6F REP OUTS DX, r/m16 Valid Valid Output (E)CX words from DS:[(E)SI] to port DX.
F3 AC REP LODS AL Valid Valid Load (E)CX bytes from DS:[(E)SI] to AL.

F3 AD REP LODS AX Valid Valid Load (E)CX words from DS:[(E)SI] to AX.

F3 AD REP LODS EAX Valid Valid F3 AD REP LODS EAX Valid Valid F3 AD REP LODS EAX Valid Valid F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from DS:[(E)SI] to EAX.Load (E)CX doublewords from DS:[(E)SI] to EAX.Load (E)CX doublewords from DS:[(E)SI] to EAX.Load (E)CX doublewords from DS:[(E)SI] to EAX.

RET Return from Procedure
SHLD Double-precision Shift Left

Shift r/m16 to left imm8 places while shifting bits from r16 in from the right.

Shift r/m16 to left CL places while shifting bits from r16 in from the right.

Shift r/m32 to left imm8 places while shifting bits from r32 in from the right.

Shift r/m32 to left CL places while shifting bits from r32 in from the right.

SHRD Double-precision Shift Right
Shift r/m16 to right imm8 places while shifting bits from r16 in from the left.

PentDoublePrecFPCompact.doc

 - 5 - v. 6

Shift r/m16 to right CL places while shifting bits from r16 in from the left.

Shift r/m32 to right imm8 places while shifting bits from r32 in from the left.

Shift r/m32 to right CL places while shifting bits from r32 in from the left.

SHUFPD Shuffle Packed Double-precision Floating-Point Values
Shuffle packed double-precision floating-point values selected by imm8

from xmm1 and xmm2/m128 to xmm1.

The source operand can be an XMM register or a 128-bit memory location.

The destination operand is an XMM register. The select operand is an 8-bit immediate: bit 0 selects which

value is moved from the destination operand to the result (where 0 selects the low quadword and 1 selects the

high quadword) and bit 1 selects which value is moved from the source operand to the result. Bits 2 through 7

of the select operand are reserved and must be set to 0.

SQRTSD Compute Square Root of Scalar Double-precision Floating-Point Value
Computes square root of the low double-precision floatingpoint value in xmm2/m64 and

stores the results in xmm1.
STOS

STOSB

STOSW

STOSD

Store String
store AL at address ES:(E)DI;

store AX at address ES:(E)DI;

store AL at address ES:(E)DI;
store AX at address ES:(E)DI;

store EAX at address ES:(E)DI;

SUBPD Subtract Packed Double-precision Floating-Point Values
in xmm2/m128 from xmm1

SUBSD Subtract Scalar Double-precision Floating-Point Values
in xmm2L/m64 from xmm1

Subtracts the low double-precision floating-point values in xmm2/mem64 from xmm1.

UCOMISD Unordered Compare Scalar Double-precision Floating-Point Values n xmm1 and xmm2/m64 and
Set EFLAGS
Performs and unordered compare of the double-precision floating-point values in the low quadwords of source

operand 1 (first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the

EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags

in the EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN

or SNaN). Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit memory

location.

UNPCKHPD Unpack and Interleave High Packed Double-precision Floating-Point Values
UNPCKHPD xmm1, xmm2/m128

UNPCKLPD Unpack and Interleave Low Packed Double-precision Floating-Point Values

VERR

VERW
Verify a Segment for Reading
Verify a Segment for Writing
Verifies whether the code or data segment specified with the source operand is readable (VERR) or writable

(VERW) from the current privilege level (CPL). The source operand is a 16-bit register or a memory location

that contains the segment selector for the segment to be verified. If the segment is accessible and readable

PentDoublePrecFPCompact.doc

 - 6 - v. 6

(VERR) or writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments are never

verified as writable. This check cannot be performed on system segments.

WAIT =

FWAIT
Causes the processor to check for and handle pending, unmasked, floating-point exceptions before proceeding

XORPD Bitwise Logical XOR for Double-precision Floating-Point Values
Performs a bitwise logical exclusive-OR of the two packed double-precision floating-point values from the

source operand (second operand) and the destination operand (first operand), and stores the result in the

destination operand. The source operand can be an XMM register or a 128-bit memory location. The

destination operand is an XMM register.

